鋁電解電容器的失效機理的詳細分析
金屬化紙介電容失效機理
一、電參數(shù)惡化失效
“自愈”是金屬化電容器的一個獨特優(yōu)點,但自愈過程頗為復(fù)雜,自愈雖能避免電容器立即因介質(zhì)短路而擊穿,但自愈部位肯定會出現(xiàn)金屬微粒遷移與介質(zhì)材料受熱裂解的現(xiàn)象。電容器紙由纖維組成,纖維素是碳水化合物類的高分子物質(zhì)。在高溫下電容器纖維素解成游離狀態(tài)的碳原子或碳離子,使自愈部位表面導(dǎo)電能力增加,導(dǎo)致電容器 電阻下降、損耗增大與電容減小。嚴重時可使電容器因電參數(shù)惡化程度超過技術(shù)條件許可范圍而失效。金屬化紙介電容器在低于額定工作電壓的條件下工作時,自愈能量不足,電容器紙中存在的導(dǎo)電雜質(zhì)在電場作用于下形成低阻通路,也可導(dǎo)致電容器絕緣電阻降低和損耗增大。
電容器紙是多孔性的極性有機介質(zhì)材料,極易吸收潮氣。電容器芯子雖浸漬處理,但如果工藝不當(dāng)或浸漬不純,或在電場作用下工作相當(dāng)時間后產(chǎn)生浸漬老化現(xiàn)象,則電容器的絕緣電阻將因此降低,損耗也將因此增大。 電容量超差失效產(chǎn)金屬化紙介電容器的一種失效形式。在高溫條件下儲存時金屬化紙介電容器可能因電容量增加過多而失效,在高溫條件下加電壓工作時又可能因電容量減少過多而失效。高溫儲存時半密封型金屬化紙介電容器免不了吸潮,水是強極性物質(zhì),其介電常數(shù)接近浸漬電容器介電常數(shù)的20倍。
因此,少量潮氣侵入電容器芯子,也會引起電容量顯著增大。烘烤去濕后電容呈會有所下降。如果電容器在高溫環(huán)境中工作,則水分和電場的共同作用會使金屬膜電極產(chǎn)生電解性腐蝕,使極板有效面積減小與極板電阻增大,導(dǎo)致電容量大幅度下降。如果引線與金屬膜層接觸部位產(chǎn)生腐蝕,則接觸電阻增大,電容器的有效電容量將更進一步減小。個別電容器的電容量可降到接近于開路的程度。
二、引線斷裂失效
金屬化紙介電容器在高濕環(huán)境中工作時,電容器正端引線根部會 遭到嚴重腐蝕,這種電解性腐蝕導(dǎo)致引線機械強度降低,嚴重時可造成引線斷裂失效。
鋁電解電容器的失效機理:鋁電解電容器正極是高純鋁,電介質(zhì)是在金屬表面形成的三氧化二鋁膜,負極是黏稠狀的電解液,工作時相當(dāng)一個電解槽。鋁電解電容器常見失效模式有:漏液、爆炸、開路、擊穿、電參數(shù)惡化等,有關(guān)失效機理分析如下。
A、漏液
鋁電解電容器的工作電解液泄漏是一個嚴重問題。工作電解液略呈現(xiàn)酸性,漏出的工作電解液嚴重污染和腐蝕電容器周圍的其他元器件和印刷電路板。同時電解電容器內(nèi)部,由于漏液而使工作電解液逐漸干涸,喪失修補陽極氧化膜介質(zhì)的能力,導(dǎo)致電容器擊穿或電參數(shù)惡化而失效。產(chǎn)生漏液的原因很多,主要是鋁電解電容器密封不佳。采用鋁負極箔夾在外殼邊與封口板之間的封口結(jié)構(gòu)時很容易在殼邊滲漏電解液。采用橡膠塞密封的電容器,也可能因橡膠老化、龜裂而引起漏液。此外,機械密封工藝有問題的產(chǎn)品也容易漏液??傊?,漏液與密封結(jié)構(gòu)、密封材料與密封工藝有密切的關(guān)系。
B、爆炸
鋁電解電容器在工作電壓中交流成分過大,或氧化膜介質(zhì)有較多缺陷,或存在氯根、硫酸根之類有害的陰離子,以致漏電流較大時電解作用產(chǎn)生氣體的速率較快,大部分氣體用于修補陽極氧化膜,少部分氧氣儲存在電容器殼內(nèi)。工作時間愈長,漏電流愈大,殼內(nèi)氣體愈 多,溫度愈高。電容器金屬殼內(nèi)外的氣壓差值將隨工作電壓和工作時間的增加而增大。如果產(chǎn)品密封不佳,則將造成漏液;如果密封良好,又沒有任何防爆措施,則氣壓增大到一定程度就會引起電容器爆炸。高壓大容量電容器的漏電流較大,爆炸可能性更大。目前,已普遍采用防爆外殼結(jié)構(gòu),在金屬外殼上部增加一道褶縫,氣壓高時將褶縫頂開,增大殼內(nèi)容積,從而降低氣壓,減少爆炸危險。
C、開路
鋁電解電容器在高溫或潮熱環(huán)境中長期工作時可能出現(xiàn)開路失效,其原因在于陽極引出箔片遭受電化學(xué)腐蝕而斷裂。對于高壓大容量電容器,這種失效模式較多。此外,陽極引出箔片和陽極箔鉚接后,未經(jīng)充分平,則接觸不良會使電容器出現(xiàn)間歇開路。鋁電解電容器內(nèi)采用以DMF(二甲基酰胺)為溶劑的工作電解液時,DMF溶液是氧化劑,在高溫下氧化能力更強。工作一段時間后可能因陽極引出箔片與焊片的鉚接部位生成氧化膜而引起電容器開路。如果采用超聲波焊接機把引出箔片與焊點在一起,可則減少這類失效現(xiàn)象。
D、擊穿
鋁電解電容器擊穿是由于陽極氧化鋁介質(zhì)膜破裂,導(dǎo)致電解液直接與陽極接觸而造成的。氧化鋁膜可能因各種材料,工藝或環(huán)境條件方面的原因而受到局部損傷。在外加電場的作用下工作電解液提供的氧離子可在損傷部位重新形成氧化膜,使陽極氧化膜得以填平修復(fù)。但是如果在損傷部位存在雜質(zhì)離子或其他缺陷,使填平修復(fù)工作無法完善,則在陽極氧化膜上會留下微孔,甚至可能成為穿透孔,使鋁電 解電容器擊穿。 此外,隨著使用和儲存時間的增長,電解液中溶劑逐漸消耗和揮發(fā),使溶液酸值上升,在儲存過程中對氧化膜層發(fā)生腐蝕作用。同時,由于電解液老化與干涸,在電場作用下已無法提供氧離子修補氧化膜,從而喪失了自愈作用,氧化膜一經(jīng)損壞就會導(dǎo)致電容器擊穿。工藝缺陷也是鋁電解電容器擊穿的一個主要原因。
如果賦能過程中形成的陽極氧化膜不夠致密與牢固,在后續(xù)的裁片、鉚接工藝中又使氧化膜受到嚴重損傷。這種陽極氧化膜難以在最后的老煉工序中修補完善,以致電容器使用過程中,漏電流很大,局部自愈已挽救不了最終擊穿的命運。又如鉚接工藝不佳時,引出箔條上的毛剌嚴重剌傷氧化膜,刺傷部位漏電流很大,局部過熱使電容器產(chǎn)生熱擊穿。
E、電參數(shù)惡化
a、電容量下降與損耗增大
鋁電解電容器的電容量在工作早期緩慢下降,這是由于負荷過程中工作電解液不斷修補并增厚陽極氧化膜所致。鋁電解電容器在使用后期,由于電解液耗損較多、溶液變稠,電阻率因黏度增大而上升,使工作電解質(zhì)的等效串聯(lián)電阻增大,導(dǎo)致電容器損耗明顯增大。同時,黏度增大的電解液難于充分接觸經(jīng)腐蝕處理的凹凸不平鋁箔表面上的氧化膜層,這樣就使鋁電解電容器的極板有效面積減小,引起電容量急劇下降。這也是電容器使用壽命臨近結(jié)束的表現(xiàn)。
此外,如果工作電解液在低溫下黏度增大過多,也會造成損耗增大與 電容量急劇下降的后果。硼酸一乙二醇系統(tǒng)工作電解液的低溫性能不佳,黏度過大導(dǎo)致等效串聯(lián)電阻激增,使損耗變大和有效電容量驟減,從而引起鋁電解電容器在嚴寒環(huán)境中使用時失效。
b、漏電流增加
漏電流增加往往導(dǎo)致鋁電解電容器失效。賦能工藝水平低,所形成的氧化膜不夠致密與牢固,開片工藝落后,氧化膜損傷與沾污嚴重,工作電解液配方不佳,原材料純度不高,電解液的化學(xué)性質(zhì)與電化學(xué)性質(zhì)難以長期穩(wěn)定,鋁箔純度不高,雜質(zhì)含量多??這些因素均可能造成漏電流超差失效。鋁電解電容器中氯離子沾污嚴重,漏電流導(dǎo)致沾污部位氧化膜分解,造成穿孔,促使電流進一步增大。
此外,鋁箔的雜質(zhì)含量較高,一般鐵雜質(zhì)顆粒的尺寸大于陽極氧化膜的厚度,使電流易于傳導(dǎo)。銅與硅雜質(zhì)的存在影響鋁氧化物向晶態(tài)結(jié)構(gòu)轉(zhuǎn)變。銅和鋁還可在電解質(zhì)內(nèi)組成微電池,使鋁箔遭到腐蝕破壞??傊?,鋁箔中金屬雜質(zhì)的存在,會使鋁電解電容器漏電流增大,從而縮短電容器的壽命。
編輯:admin 最后修改時間:2018-01-05